Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens.
نویسندگان
چکیده
Dehydration tolerance was an adaptive trait necessary for the colonization of land by plants, and remains widespread among bryophytes: the nearest extant relatives of the first land plants. A genome-wide analysis was undertaken of water-stress responses in the model moss Physcomitrella patens to identify stress-responsive genes. An oligonucleotide microarray was used for transcriptomic analysis of Physcomitrella treated with abscisic acid (ABA), or subjected to osmotic, salt and drought stress. Bioinformatic analysis of the Physcomitrella genome identified the responsive genes, and a number of putative stress-related cis-regulatory elements. In protonemal tissue, 130 genes were induced by dehydration, 56 genes by ABA, but only 10 and eight genes, respectively, by osmotic and salt stress. Fifty-one genes were induced by more than one treatment. Seventy-six genes, principally encoding chloroplast proteins, were drought down-regulated. Many ABA- and drought-responsive genes are homologues of angiosperm genes expressed during drought stress and seed development. These ABA- and drought-responsive genes include those encoding a number of late embryogenesis abundant (LEA) proteins, a 'DREB' transcription factor and a Snf-related kinase homologous with the Arabidopsis ABA signal transduction component 'OPEN STOMATA 1'. Evolutionary capture of conserved stress-regulatory transcription factors by the seed developmental pathway probably accounts for the seed-specificity of desiccation tolerance among angiosperms.
منابع مشابه
Proteomic studies of the abiotic stresses response in model moss – Physcomitrella patens
Moss species Physcomitrella patens has been used as a model system in plant science for several years, because it has a short life cycle and is easy to be handled. With the completion of its genome sequencing, more and more proteomic analyses were conducted to study the mechanisms of P. patens abiotic stress resistance. It can be concluded from these studies that abiotic stresses could lead to ...
متن کاملPlant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2.
Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the ...
متن کاملAn Innate Immunity Pathway in the Moss Physcomitrella patens.
MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMP...
متن کاملGenome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response
Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap betwe...
متن کاملGenetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.
The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 176 2 شماره
صفحات -
تاریخ انتشار 2007